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ABSTRACT

This paper reviews the previous work sn the adaptive control of robotic systems.
Although the field is relatively new and does not yet represent a mature discipline,
considerable attention for the design of sophisticated robot controllers has occurred. In
this presentation, adaptive control methods are divided into model reference adaptive
systems and self-tuning regulators with further definition of various approaches given in
each class. The similarity and distinct features of the designed controllers are delineated
and tabulated to enhance comparative review.

1. INTRODUCTION

Control of robotic manipulators is a challenging problem mainly due to tne nonlinear
and coupled nature of the system dynamics. A considerable amount of valuable work has been
produced in the dynamic formulation and the control of these systems within the last two
decades. Since the pioneering works of Uicker {1], Hooker and Margulies {2], and Rahn and
Roth {3) on the formulation of dynamics, researchars have concentrated on the efficient
computer implementation and numerical construction of the dynamic equations. while the work
on the efficient dynamic equation algorithms 1s still going on, control of manipulators has
also received significant attention. Over the years, literature on the manipulator control
methods using optimization, linearization, nonlinearity compensation, and rscently, adaptive
techniques has become quite rich.

This paper reviews the accumulated work in the area of adapti:ve control as applied to
robotics. The reader should note that adaptive control in itself is not ve: a mature
discipline in systems .heory. Also, since some of the existing tools in adaptive control
are strictly for linear and/or time-invariant systems, their application to robotics
deserves special attention. The :mmaturity of adaptive control is best demonstrated by the
lack of a definit._.on of adaptive control agreed to by the leading researchers {4].

Accerding t. Webster's dictionary, to adapt means "to adjust (oneself) to new
circumstances®. Adaptive control, then, in essence, is used 20 mean a sophisticated,
flexible control system relative to the conventional fixed feedback system. An adaptive
system will assure quality system performance when large and ungredictable var:iations in the
plant dynamics or loading occur. Although our aim is by no means to establish the missing
definition, since the robotics community seems to have reached a consensus on what is meant
by adaptive control, we will give our definition to illustrate our interpretation of
adaptive cortrol.

Definition: A feedback control system is adaptive if the gains are
selected with the on-line information of plant outputs
and/or plant state variables.

This definiticn is depicted in block diagram format in Figure !. The above definition

encompassas all the previous work on the adaptive control of manipulators currently
available to us.
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Pigure 1. BSlesk Disgrem Represenuatisn of
AR Maptive Contsel Syetem

Although the early work on adaptive control dates back to the 1930s, its first
extensive application to robotics was given by Dubowsky and DesPorges in 1979 [S]. Since
then a variety of different methods has been developed. S0 far, the existing adaptive
control methods applied to robotics may be categorized under the design of

i. Model Refersnce Adaptive Systems (MRAS)
ii. Self-tuning Regulators (STR)
The following methods are used in the design of MRAS:
L. Local parametric optimization
ii. Lyapunov's second method
111, MHyperstability theory
iv. 8liding control theory
The STR design procedure may be divided into three steps:

i. Selection of a parametric structure to represent the robotic system via
. discete-time modeling ’

ii. On-line estimation of system parameters usingy the least squares, extended least
squares or saximum likelihood methods

iii. On-line controller design based on the estimated system parameters via extended
minimum variance or pole-zero placement techniques

Block diagrams of MRAS and STR are illustrated in Figures 2 and 3, Note that the
dotted boxes in theze figures may be reduced to the regulator block in Figure 1. After a
brief review of system dynamics, the related background work is presented below.
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Figuze 2. Block Diagram of Modal Reference Adaptive System rigqure 3. Bdlock Diagram of Self-tunine Requlator
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2. SYSTEN DYNAMICS

Dynamic equations of an n-link, n-degree-of-freedom, spatial, serial robot arm with
rigid links are given by

Alete = P(o,8)8 - Glo)o » u (n

where 0cR” is the relative joint displacement vector {» = (.? ‘T,?‘.zn,' Alo) A™*P s the
generalized inertia matrix, =f = =P(¢,d) §¢A" represents the inertia torques due to
centrifugal and Coriollis accelerations, -¢g = ~G(9) och” 18 the gravity loads as seen at the

joints where G(olcl"'" is non-unique, and ueR® is the control. 1In state~-space
representation, Eq. (1) can be given by
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Note that functional dependencies are dropped for clarity. If each actuator (D.C. motor) is
modeled as a second-order, linear, time-invariant subsystem (neglecting the armature
inductance), and {s coupled with the sanipulator dynamics, the previocusly defined state
vector, x, will be pressrved and the control will be the actuator input voltage. In this
case, Bq. (2) takes the following fors

0 I 0 -1
. | u (3)
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where A = A ¢+ J is the combined inertia matrix with J = dtuq(Jkl, Jk i¢ the rotor inertia of

the kth actuator referred to output shafe, '1' 22 and !3 are diagonal, positive definite

constant matrices and functions of various actuator/qgear train paraseters.

Although most of the works do not include the actuator dynamics, the above,
simplified form may be substituted, since the form of the equations resains the gase.
Depending on the adaptation algorithm, these constant actuator parameters may either be
included in the on-~line identification scheme or assumed known. In our presentation, the
generic u will represent the suitable control (either the effective input torques or the
voltages;. The only exception is [6] where third-order actuator dynamics is studied in
addition to the above simplified form. The dynamic cquations, BEq. (2) or (3), may be given
in terms of the robot-hand coordinates expressed in a fixed reference frame (task-oriented
coordinates) and adaptive controllers may be designed for this system {6,7,8].

3. MRAS-BASED CONTROLLERS

In MRAS design, usually a second-ovder, linear, time-invariant, continuous-time
reference model is selected for each link of the serial robot. Then, a control law is
derived to force the robot to behave like the selected model. As mentioned earlier, local
parametric optimization (5,9], Lyapunov's second method [(10], hyperstability (11,12,13], or
the sliding control theory [14,15,16] is usually employed to achieve the goal.

In 1979, Dubowsky and DesForges (S| implemented the local parametric optimization
technique on a robot arm. 1In their formulation, each servomechanism is modeled as a
second-order, single-input, single-output system, neglecting the coupling between system
degrees of freedom. Then for each degree-of-freedom, position and velocity feedback gains
are calculated by an algorithm which minimizes a positive semi-definite error function
utilizing the steepest descent method. Stability is investigated for the uncoupled,
linearized system model. This work represents the first implementation of adaptive control
to robotics.
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The recent works have concentrated on the designs based on the Lyapunov’s second method
and the hyperstability theory. In the most general case, these control methods yield the
following control structure upx

u_ = 51’1'“ P .G ,x ) ¢ ‘2'2(‘1"

P P ' p Xpeup) & o4yt m

X _,X

1'% r"r, Q@

P

where subscripts p and r represent the plant and reference model, respectively, & is either
0 or 1, ft¢l", ltcl"x" nonlinear or constant gain matrix, i=1,2, or 3, m, (R" represents an

unknown system parameter like the payload, link mass content, center of gravity location,
etc., where a combination of these constant parameters or a nonlinear term is to be
estimated in the adaptatién process, and j=1,2,...,k, where k depends on the specific
controller design. Although some controllers call for plant joint accelerations, they are
not shown in Eq. (4).

The first term f, in Eq. (4) describes the nonlinearity compensation. It may

represent the complete manipulator dynamics as in {17,18], or only the gravity terms and the
Jacobian as in {7]. A controller with 5 " 1 and 5% 83" 0 indicates only a nonlinearity

sompensation. The seczond term in up represents the feedback portion of the controller. The
gain matrices Ki may either be nonlinear or constant. Now 6y = 43 ™ 0 and §; 1 represent
the control structures of (16,19,20,21]) among others. The third term in u_ includes the
portion of the control where system parameters are estimated (17,18,22]. Slotine (18], for
example, includes all the components {nto his controller, therefore, §, = §, = 4y = 1.
Takegaki and Arimoto's control strategy (7] may be summarized by 8, = 4, ° 1 and &y = 0,
Horowitz and Tomizuka's [22] & = 0, iy ® &y " 1, etc.

Various MRAS controi structures are summarized in Table 1. This table differentiates
the methods which require explicit calculation of dynamic equations (Nonlinearity
Compensation) from the methods which adaptively estimate the plant parameters on-line
{Incorporation of Plant Parameter Estimation). However, further distinction is needed in
the latter group, since while one approach explicitly identifies the nonlinear terms (as in
A, G, and * with reference to Eq. (2)), and estimates them on-line, the recent methods treat
the constant robot parameters as unavailable, estimate and compensate them ian their
algorithms. Some methods choose nonlinear feedback matrices in their controllers (H, L, §
in Table 1) without incorporating the explicit system parameter  estimations.

The a«arly works presented in Table 1 have generally avoided the nonlinearity
compensation and spted for the assumption that the nonlinear system parameters vary slowly
in *ime. On this basis, a stability analysis is given for the system. This assumption
almost certainly 1s too restrictive, since the nonlinear manipulator system parameters are
functions of the jcint position and velocities. The faster the robot movement is, the more
rapidly the system parameters will vary. The objective on the other hand, for the more
sophisticated control methods is to enable fast robot movements with high precision. As a
result of revolutionary advances in the microprocessor industry with prices steadily coming
down, the possibility of real-time implementation of computation intensive algorithms is
steadily improving. Recently, Wander and Tesar (23,24] have implemented the complete
dynamic equations [25] of a 6-link, general architecture robot arm in 6.5 nilli sec. (150
Hz) 1in explicit form without using recursion. Their algorithm is able to treat an
n-degree-of-freedom (DOF) serial system of completely general parameters (43 milli sec. for
12-DOF). They have implemented the algorithm on an Analogic AP-500 array processor.
Further work on the comparative analysis of various computer architectures is underway at
the University of Texas at Austin.

Some of the most recent works include nonlinearity compensation along with a feedback
portion and parameter identification features [6,17,18]. Once the control has the form up =
ip(op)u;, where subscript p denotes the plant, A_ is the on-line calculated generalized
inertia matrix and u' is yet to be selected, generally, global stability of the closed-locp
system can be shown provided that Agli * I, where I is the identity matrix of order n, is

maintained {6]. Otherwise, in reference to Table 1, all methods without nonlinearity
cempensation need to assume system parameters stay constant during the adaptation.
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Table 1. Summary of MRAS Controllers in the Literature

CONTROLLER CHARACTERISTICS
ASSUMED SYS.
INCORPORATN | PARAMETERS
LINEAR / NL | OF PLANT 2 STAY CONST.
NONLINEARITY | sggDSACK | PARAMETER DURING
COMPENSATION |, MeTHOD | ESTIMATION ADAPTATION 3
Dubowsky and DesForges
1979 (5] - (o) . N
Horowitz and Tomizuka .
1980 (23] - c N V)
Takegakl and Arimoto
1981 [ (¢] L - ¥
Baiestrino.et al. 1983 [19] .= H . N
Stoten 1983 [21] - H . v
Balestrino.et al. 1984 ([16] - H,S . A
Nicosia and Tomel 1984 [27] = H - v
Vukobratovic.et 21.1985 [30)] . H - v
Landsu 1988 (36] - 1~ N v
Whyte 1985 (26) e L,C . v
Lim and Esiami 1985 [20] — L = y
v L . .
. - L - .,
Hsis 1988 (29] . H,C .
- C N
Craig, et al. 1388 (17] N - v .
Slotine 1988 {18) v L.C.,S 3 P
Tosunogiu and Tesar A L,H,C v .
1988 [6] N L.H,C v -

ZTOICrOO»PO Wi~

v

: éalcumu compiete or partial nonlinear dynsmica on-line.

: Robot link lengths, mass contents, sctuator parameters, etc., if not otherwise specified.

: if “yes”, stability ansiysis based on this assumption.

: Gravity load compenssted; aiso requires on-line Jacobian calculation.

. Requires only the on-iine caicuistion of the inertia matrix.

: Nonlinesr-gain feedback using local parametric optimization.

: Constant-gain feedback.

: Nonlinear-gain feedback using Lyspunov's seccnd method.

: Nonlinear-gain feedback using hyrerstability theory.

: Nonlinear-gsin feedback using siliding theory.

: Structure of nonlinear system parasmeters (functions of state variables) are explicitly assumed
known and are ptively imated; stability analysis based on hyperstability theory.

: Yeos.
: No.
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Balestrino, et al. [19) have developed an adaptive controller which produces
discontinuous control signals leading to chattering. Stability analysis is presented using
hyperstability theory. 1In (16], Balestrino, et al., present three methods; the first is
based on the theory of variable-structure systems, the second on the hyperstability and the
third is a combination of the first two methods. Designed controllers produce
high-frequency chatter which is highly undesirable since higher order dynamic modes may be
excited. Numerical simulations show an extremely high frequency of sign switches in the
plant input, prohibiting its physical realization. Stoten ([21] formulates the MRAS problem
closely following the procedures in [9) and simulate the algorithm for a l-link manjipulator.

Horowitz and Tomizuka (22] study the adaptive control of a 3-link arm. Gravity effects
and the mass and inertia of the first link are neglected. Each nonlinear term in the
dynamic equations is identified a priori, treated as unknown, and estimated by an adaptation
algorithm. For the modeled system and the designed controller, stability analysis is given
by Popov's hyperstability theory. Later, Anex and Hubbard (26] have experimentally
implemented this algorithm with some modifications, System response to high speed movements
is not tested, but practical problema encountered during the implementation are addressed in
detail.

Takegaki and Arimoto (7] propose an adaptive method to track desired trajectories which
are described in the task-oriented coordinates. The suggested controller compensates
gravity terms, calculates the Jacobian and the variable gains, but does not compensate the
manipulator dynamics completely. System stability is assured if the manipulator hand
velocity is sufficiently slow, i.e., nonlinear system parameters change slowly.

Nicosia and Tomei (27] derive control laws using the hyperstability theory to follow a
linear, time~invariant reference model. The plant (manipulator) parameters and the paylocad
are assumed known and are not identified. Their controller does not produce chattering and
is relatively easy to implement. Lim and Eslami (20] propose controller designs based on
Lyapunov's secord method. The author's objective is to control the linearized dynamic
equations with the developed controllers; hence, assuring the stability of the linearized
system. Later, nonlinearity compensation is suggested to enhance the system response.
Whyte (28] designs an adaptive controller via Lyapunov's second method, The algorithm does
not require any knowledge of the manipulator dynamics and selects nonlinear gains in the
feedback loop to follow the reference model. System stability is shown, provided that the
parameter changes are slow. Hsia [29] reviews the current methods used in adaptive control
and gives brief formulations for each method. Vukobratovic, et al. {(30], review local
parametric optimization and hyperstability-based methods and chocose not to include the
approaches based on Lyapunov's second method in their book on the non-adaptive arnd adaptive
control of manipulators.

Tosunoglu and Tesar (6] select a generalized nonlinear reference model which represents
ideal robot dynamics. The plant, the actual robot whose system parameters may not be
exactly known, is then forced to behave like the reference model to follow the desired
trajectory. The advantage of the nonlinear reference model is that the adaptation process
ceases once the nominal trajectory is recovered. (Such is not the case when linear models
are selected.) Error-driven dynamics is derived and the system is augmented to include the
integral feedback feature to eliminate the parameter discrepancies between the plant and the
reference model, and the disturbances acting on the system. It is shown that the
controllers designed in this work via Lyapunov's second method also produce hyperstable
systems. Simulations demonstrate successful trajaectory tracking on 3- and 6-link, spatial
manipulators under unknown payloads and estimated system parameters (link lengths, masses,
inertia components, paylocad, etc.}. The authors also provide comparative analyses of the
effect of integral feedback and various controller update rates, 60 to 200 Hz,

Craig, Hsu and Sastry [17] take an interesting approach in designing an adaptive
controller using the Lyapunov's second method. In this work, the structure of the terms in
the dynamic equations is assumed known, but their numerical values remain unknown. They
partition the dynamics into known and unknown portions and estimate the unknown parameters
along with compensation for the nonlinearities., Global stability is proved by assuming tha:
a matrix function of the plant joint position, velocity and accelerations is bounded.
Althcugh all the terms which are functions of positions are bounded, velocity and
accelerations may increase without bounds; thus, making the matrix unbounded. However,
modifications in the controller structure may alleviate this problem. Their numerical
simulations identify link masses and Coulomb friction coefficients for a two-link
manipulator with encouraging results.
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Slotine and Li (18] derive a control law with full feedforward dynamics compensation,
PD feedback and on-line payload and manipulator parameter estimation using Lyapunov's second
method. Since this control scheme does not eliminate the steady-state errors, the authors
restrict the steady-state position errors to lie on a sliding surface. This modification,
in turn, causes the loss of numerical efficiency where, interestingly, the authors make use
of the recursive computation feature of the manipulator dynamics. Later, an approximate
irolementation is suggested to improve the numerical efficiency. Payload parameter
identification is simulated on a two~link manipulator.

Once these current methods are refined, application to manipulators with higher degrees
of freedom will naturally follow. Determination of the structure of the constant terms (for
identification) for manipulators with higher number links may be achieved with symbolic
generation of dynamic equations, but the effect of increased number of terms will require
further investigation.

4. SELF-TUNING REGULATOR (STR) BASED CONTROLLERS

In this method, typically, nonlinear manipulator dynamics is linearized about a nominal
trajectory and then discretized, The discretized model gives the structure of the
parametric model whose parameters need to be estimated on-line. The parametric model is
given by the following multivariable difference equation

yik) = 6T4(k-1) + e(k) (s)

where y(k)cRn is the system output, k is the sampling time counter, etRnx(an+l) contains

the parameters to be identified, “R(an+1) represents the combined system input and output

vector, ecR” is a random, zero-mean Gaussian white noise, and m is the order of the
estimation model.

Parameter estimation is based on the system identification techniques using the sampled
input-output data. Although such techniques include the least squares, extended least
squares and maximum likelihood methods; the recursive least squares method is extensively
used because of its lower computational requirements [8,25,29-36]. The recursive least
squares estimation is given by

- a T
8; (k} = ei(k-l) + P(k)o(k-l)(yi(k) = 8 (k=11 ¢(k-1)] (6)

where

T
P(k) = _%_[ P(k-1) - P(k-1)o(k-1)¢ (k-1)P(k-1)
A+ ¢ (k=1)P(k=1) 9 (k~1)

ai(k) represents the estimate of the ith row of 6 defined in Eq. (5), P(k) is a square
symmetric matrix of order {(2nm+l), and 0 < A < 1 is an exponential forgetting factor.

Once the parameters are identified at each sampling time, regulator parameters are
estimated using the extended minimum variance (8,30,32], or pole-zero placement techniques
[29,33,35]. The method described above is known as explicit or indirect STR. If the
regqulator parameters are estimated directly by a reparameterization of the process model,
the model is called implicit or direct STR. Usually implicit STR algorithms cancel all
process zeros making them suitable only for minimum phase systems.

Koivo and Guo {32] assume an autoregressive model and identify system parameters using
the recursive least squares technique. They design an extended minimum variance controller
for the estimated model. The method chooses a quadratic performance index in terms of the
state error vector and the system control vector and minimizes it relative to admissible
controls while satisfying Eq. (5). Their simulations include decoupled and partially
coupled parametric model structures. They report that the parameter convergence is faster
in the decoupled case, and that no significant improvement in the system response is ]
cbserved for the coupled model. This is rather interesting, because the amount of on-line
calculations is considerably reduced for the decoupled case. Also reported is the fact that
the model and the controller parameter identifications may not converge fas* enough while
the robot motion takes place.
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Lee (8] derives the perturbation equations, discretizes them and estimates the system
parameters using the recursive least squares method. Then an adaptive controller is
designed using the extended minimum variance technique. The parameter identification
requires tne estimation of 6n? parameters on-line (216 for a 6-link manipulator). Lee
provides a detailed breakdown of the computational requirements and concludes that for a
6-1link manipulator the control scheme can be updated at about %6 Hz on a PDP-11/4S5.

Hsia [29] reviews the STR formulation on a decoupled model. Karnik and Sinha (35]
develop an STR based on a non-minimum phase model which assigns the system poles vhile
retaining all the zeros. This algorithm is developed for a UNIMATE-2000 robot. Landau
[9,36) and Vukobratovic, et al. (30) review various STR designs in detall.

In general, discrete-time formulation is especially suitable for computer control.
However, on-line estimation of all system parameters and the control design make STR
computationally intensive. Astrom (4] reports that numerical estimation techniques tend to
be numerically unstable as the number of parameters increases in the system model. 1In this
case, the complete system is parameterized. However, the papers reviewed in this work do
not raise the question with regard to nuwaerical instability although they do indicate the
importance of initial parameter selections. In STR methods, convergence of estimated
parameters in the adaptation process is guaranteed if the system parameters are constant.
Since the actual robot model parameters are nonlinear functions of the state vector, the
question of system parameters varying slowly in time again arises in the STR methods,

5. CONCLUSIONS

Adaptive control of robotic systems has received significant attention within the past
few years. A class of control laws based on the MRAS design realize the adaptation through
signal synthesis with a completely known parameter structure, while some methods select a
subclass of the parameters for identification for reduced computational burden. All
adaptive controllers via STR design and some MRAS-based methods estimate the complete
(nonlinear) system parameters on-line.

Stability analysis usually relies on the condition that the nonlinear system parameters
vary slowly. This condition is removed if a nonlinearity compensation component is also
incorporated i the controller, The most recent works, which exploit the special structure
of manipulator dynamics, seem to favor this feature. The use of state-of-the-art
microprocessor technology along with the sophisticated dynamic formulation algorithms
strongly indicate that real-time implementation of dynamic compensation is rapidly becoming
feasible.

Further research to perfect the existing algorithms and to provide rigorous stability
proofs, which will improve the maturity of the adaptive control, is still needed. Although
today's industrial robots employ linear controllers to accomplish a number of useful tasks,
fast and precise robot movements remain to be implemented. Development of laboratory test
beds and implementation of the developed adaptive controllers on robotic manipulators are
also crucial, since only after successful demonstrations will technology transfer be
possible.
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